Ship-borne Wave Gauge using GNSS Interferometric Reflectometry

COAST CAEL

Kaoru Ichikawa (ichikawa@riam.Kyushu-u.ac.jp), J.Q. Zhu, J. Noda, R. Sakemi, K. Yufu and K. Matsuura

Wave Prediction

Solve Energy equations

- Energy as the wind stress
- ■Wave-wave interactions
- Energy dissipation
- ✓ Estimations are possible if wind fields are available

➤ Various error sources

- ✓ Wind stress variations within the atmospheric boundary layers
- ✓ Topographic effects (bottom, side)

Proper corrections are necessary by wave field observations

Wave Buoys Distrib.

➤The distribution of wave buoys is quite sparse

• v.s. spatial scales of wave fields

Waves from satellites Waves = wind waves + swells

Various sensors detect wind waves
 □ For estimations of wind speeds

➢Only satellite altimeters measure swells

□Observe nadir points only

- Significantly sparse both in time and space
 - » 10 day + 330 km or 35 day + 75 km

Waves from ships

Practically usefulAreas of high demands

Subjective visual observations by experienced crew

□Trials for objective obs

- Machine learning of video recordings
- Ranging by wires and lasers

 ✓ Moving vessels generate waves around themselves

Purpose of this study

Objective wave observations from moving vessels

Wave fields slightly away from ships

➢ <u>Anytime, anywhere</u>

Especially, at night time when visible observations are not available

 Use <u>GNSS</u> (Global Navigation Satellite System)

 GPS, GLONSS, BeiDou, Galileo
 GNSS Reflectometry (GNSS-R)
 GNSS Interferometric R (GNSS-IR)

GNSS-IR

 S_D : Direct GNSS signals S_R : GNSS signals reflected from the sea surface ΔL : Travel distance delay

> Therefore, temporal variations of η (*i.e.*, waves) can be determined from variations of SNR (as "interferometory")

Signal strength (aka, SNR) depends on the

□SNR becomes large/small every 0.2 cm

phase difference between S_D and S_R

 \Box Delay ΔL depends on the antenna height from

(wavelength of GNSS signals) of ΔL change

the sea surface $(h=H-\eta)$ and the incident angle

 $\succ S_R$ always delays from S_{D}

Simple Simulation

- Simulate 10 sec of 20 Hz SNR variations sinusoidal surface waves
 - Wave period 5 sec
 - Different wave height (SWH; 1m, 2.8m)

Higher-frequency variations for larger SWH
 Faster *h* changes

HF signals modulate periodically

 \blacksquare Less *h* changes at wave troughs and crests

Index for HF variations

Nc - SWH relation

- Nc (in 10 seconds) determined from waves with periods 2, 4 and 6 sec against SWH
- The curves become the same when normalized by the wave periods
 - Except high limits

2023

Higher SWH produces larger Nc^T

0.10 Density(m2/HZ) 0.08 0.06 Wave Spectrum D COAST CAEN 0.02 0.00 0.00

0.2HZ

0.25

0.50

0.75

1.00

Practical simulation

Change single-frequency sinusoidal waves to waves with ISSC (Bretschneider or modified Pierson-Moskowitz) spectrum

$$S(f) = \frac{5}{16}Hs^2 f_m^4 f^5 exp[-\frac{5}{4}(\frac{f}{f_m})^{-4}]$$

> Simulate 20 Hz SNR for 120 sec
• With random frequency phases

Nc^T for ISSC spectrum

 \blacktriangleright Almost similar tendency to Nc^{T} of simple sinusoidal waves ✓SWH can be estimated from Nc^{T}

Actual Observations

 Install a helix GNSS antenna (TOPGNSS TOP107) to a ferry "New Camellia" (Camellia Line Co. Ltd., 19,961 Gross Tons)
 Sample SNR at 20 Hz by a receiver (ublox F9P)

Real SNR data

- ➤ 2 min sampling (2400 samples)
- Remove variations longer than 20 sec, which could be affected by ship motions

Different sea states

➤ Examples of 3 different sea states:

- Calm (2022/5/18)
- Ordinary (2022/6/14)
- Rough (2022/6/24)

hindcast data by JWA POLARIS wave model

Select 2 low-elevation satellites for each case

Interferometry occurs only when elevation angles are low (due to GNSS signal polarization)

4	Case	Date in 2022	Time [UTC]	Latitude [°N]	Longitude [°E]	SWH [m]	Wave Period [9]	Subca se	PRN	Elevation angle [°]
COAST CAEN	1	5/18	14:10- 14:12	34.196	129.926	0.17	3.6	1G	G08	12.9
		0,10						1R	R18	8.2
	2	6/14	16:10- 16:12	34.702	129.574	1.51	5.3	2G	G04	12.7
								2C	C33	7.6
	3	6/24	14:10- 14:12	34.138	129.951	2.56	6.4	3G	G03	13.8
								3R	R24	12.0

Period Estimation

COAST CAEN

SWH estimation

SWH values are estimated by using the previous Nc⁷-SWH simulations with the ISSC spectrum

 \square We need period-normalized Nc^{T}

• Use estimated period *Tg*

	Subassa	Wave Period Tg [s]	SWH [m]		
Case	Subcase		Average	Э	
	1G	2.7	0.2	0.3	
	1R	3.1	0.3		
	2G	8.6	2.7	.7 .2 2.0	
	2C	7.1	1.2 2.0		
	3G	9.8	2.6	0	
	3R	6.9	3.3 3.0	3.0	

Comp. with wave model

Averaged estimations qualitatively agree with the model (star marks)

 \checkmark Individual estimations have large discrepancies

➢ We can improve Nc-SWH relationship by more comparisons

COAST CAEN

2023

Summary ► A new method is proposed to measure wave periods & heights from moving vessels using GNSS-IR ■ Waves cause high-frequency SNR variations by interferometry of direct and reflected GNSS signals ■Wave periods can be estimated from modulations of h-f SNR variations

Reasonable results have been achieved from actual samples

- Practically, Nc-SWH look-up tables can be established from sufficient cases
 - This table could depend on areas and seasons because of different wave spectrums