

## Utilizing UAV and LiDAR technology for coastal erosion study: Importance of sensor calibration and methodology proposal

Régis GALLON<sup>1</sup>, Antoine COLLIN<sup>2</sup>, Dorothée JAMES<sup>2</sup>, Emmanuel POIZOT<sup>1</sup>

## Why using AUV and limitations ?

<sup>1</sup> Conservatoire National des Arts et Métiers, INTECHMER, 50110 Cherbourg-en-Cotentin, France; (regis.gallon ; emmanuel.poizot)@lecnam.net <sup>2</sup> Coastal GeoEcological Lab, Ecole Pratique des Hautes Etudes, PSL University, Dinard, France; (antoine.collin ; dorothee.james)@ephe.psl.eu

2 k€ to 20 k€ for professional UAVs



Easy to deploy Flight over 40 minutes

several sensors available (photography, thermal, multispectal, LiDAR,...)



High temporal and spatial resolution  $> 2 \text{km}^2 \text{ per day}$ < 2cm per pixel

### Useful tools for coastal zone management

- Coastal land cover mapping
- Sedimentary dynamics
- Coastal disaster management

## BUT

How can you be sure of the quality of the data acquired ? Can data from different drones/sensors be comparable ?

# Find a flight site with different substrates and install GCPs (n=9)



Fig 1 : Localisation of the study area, the red box represents the flight area.

## **2** Test different flight configurations

- Two configurations mixed (DJI M300 L1 + D RTK2)
- Two GNSS with NTRIP (Teria): Emlid and Trimble R12

#### Tab 1 : Description of each flight

|           | UAV    | Antenna  | Correction |
|-----------|--------|----------|------------|
| Flight 1  | M300_1 | D RTK2_1 | Emlid      |
| Flight 2  | M300_1 | D RTK2_2 | Emlid      |
| Flight 3  | M300_1 | NTRIP    | -          |
| Flight 4  | M300_2 | D RTK2_1 | R12        |
| Flight 5  | M300_2 | D RTK2_2 | R12        |
| Flight 6a | M300_2 | D RTK2_2 | -          |
| Flight 6b | M300_2 | D RTK2_2 | Post-      |
| Flight 7  | M300_2 | NTRIP    |            |

\* alignment with CloudCompare



Altitude: 50m Area: 0.3 km<sup>2</sup> Speed: 4m/s Time: 12 min

#### Analysis process 3



A proposal methodology for LiDAR sensors

#### **Convert L1 to las files** SCR : RGF93 / L93 Geoid : GRS80



**Cleaning las files** Remove birds isolated points

**Alignment with GCPs** CloudCompare



#### **Statistical analysis**

## **Results and discussion**

**1** Data acquired Transect 2 Transect 1 126 650 000 points 2 447 points / m<sup>2</sup>



**3** Comparaison L1 data vs. GCPs



various corrections and altitude measurements



Fig 2 : Topographic profiles derived from point cloud without correction (red), with correction (blue), with post-correction (orange)

acquired by the trimble R12.

**Tab 3** : Root-mean-square error of GCPs measurements between four correction procedure

Post-**Z(m)** GNSS NTRIP None correction

**RMSE** 0,023 0,027 0,278 0,042

Conclusion

- The use of drones has enabled coverage of numerous coastal areas, but it is important to conduct calibration exercises to systematically compare sensor performances (LiDAR, photogrammetry, etc.)
- It is important and urgent to develop a national coastal study network utilizing drones.

• High Precision GNSS Receivers (<1cm Accuracy) - Tab2

• Without D-RTK2 antenna correction, there are offsets in X-Y (1.24m) and Z (0.72m) - Fig 2, Fig 3

Y(m)

- Correction of the position D-RTK2 antenna by an RTK GNSS receiver significantly enhances precision.
- Utilizing Differential GPS Corrections via the Internet also yields precise data; however, it needs a stable and robust internet connection throughout the entire flight.

2

Emlid